Drug Informatics for Chemical Genomics

 $\bullet \bullet \bullet$

An Overview

First Annual ChemGen IGERT Retreat Sept 2005

Drug Informatics for Chemical Genomics... - p

ChemGen Informatics

The ChemMine Project

Library Comparison

ChemGen Informatics

A Multidisciplinary Symbiosis

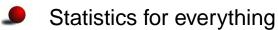
- Cheminformatics
- Drug Informatics
- Network Analysis & Modeling
- Structural Informatics
- Bioinformatics

Cheminformatics

Structure formats & format rendering

- Property descriptor generation
- Similarity searching
 - Substructure & similarity
 - Property searches
 - Model-based searches
 - Pharmacophore & QSAR
- 3D conformer calculation
- Library design & analysis
 - Library comparison
 - Structure & descriptor clustering
 - Diversity analysis
- Data management: databases

Drug Informatics



- Bioactivity data
- Lead prioritization
 - QSAR analyses
 - Pharmacophore modeling
- Structural informatics
 - Docking
 - Rational drug design
 - Virtual screening

Bioinformatics and Network Analysis

Bioinformatics

- Sequences & mRNA/protein profiling
- Protein-protein interaction data
- Pathways & Ontologies
- Mutant analysis
- Network Analysis
 - Clustering (HC, KM, PCA, MDS, NN, etc)
 - Systems modeling

Dilemma for Academic Institutions

Current infrastructure

- Very
 - Very limited open-source resources
 - Dominance of commercial software

Decision: commercial vs. public

- Black boxes for a lot of \$
- Focus on public resources with internal development time

Advantage of Public Resource Approach

- Higher educational value
- Transparent, modifiable and shareable
- Higher public impact

ChemMine: Chemical Genomics DB

Compound mining and screening database for drug and chemical genomics discovery

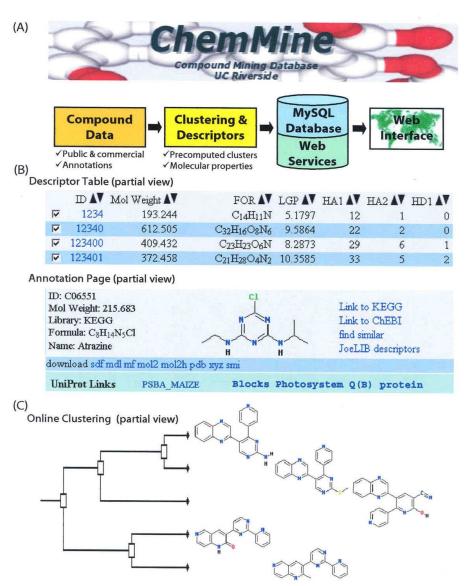
- Current functionality
 - Activity- & property-based searching
 - Structure-based searching
 - Online clustering
 - Upload and retrieval of screening data
- Long term goals
 - Central depository of internal and external screening data
 - Online service for mining of drug-like compounds
 - Ontologies for bioactives and screening data
 - In silico discovery
 - Training set for predictive approaches
 - Property-focused libraries
 - Systems approaches
 - Predictive process modeling

Publication: *Plant Physiol* (2005) **138**, 573-577

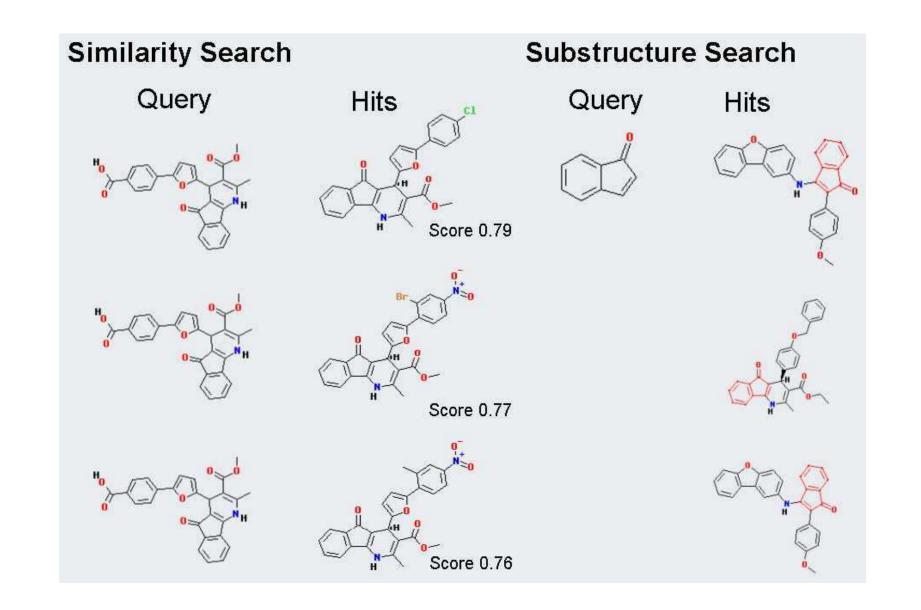
Functionality Overview

URL: http://bioweb.ucr.edu/ChemMine/

Over 2.5 million structures

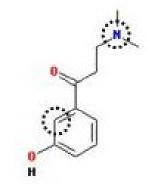

- Screening libraries
- Bioactives & natural CMPs
- Metabolic compounds

Activity information

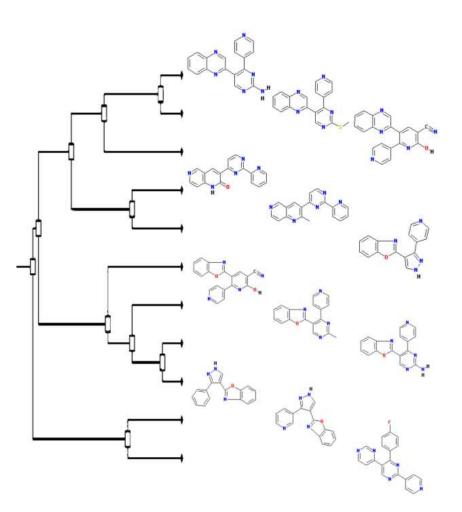

- Screening data
- Target proteins
- Literature

Web services

- Clustering
- Chemical descriptors
- Structure formats


Similarity Searching

2D Fragment Similarity Searching

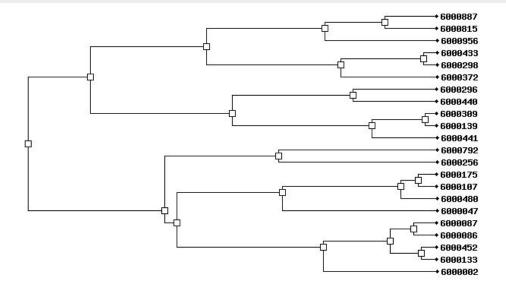

- Most commonly used for large database searching.
- 3D approaches used in pharmacophore searching.
- Advantages
 - Fast and accurate
- Involves 2 major steps
 - Structural descriptors
 - Similarity coefficients/measures
- Structural descriptors in similarity searching
 - Atom pairs: C12N03_06
 - Atom sequences: C12C13C13C02C02N03
 - Fingerprints: rules to enumerate all fragments in common structures
 - Substructure searching
 - Similar to atom sequences

Sample Structure

Online Clustering

- Similarity-based
- Descriptor-based
- Hierarchical or binning clustering
 - All-against-all similarity
 - Distance matrix
 - Clustering

Preclustered Libraries


PubChem: 711,361 compounds													
Similarity	Number of	lumber of Cluster Size											
after	Clusters	>100	>50	>20	>10	>2	Singlets						
90%	110969	<u>27</u>	<u>54</u>	280	<u>1199</u>	109409	389901						
80%	116707	77	<u>173</u>	805	<u>2579</u>	113073	299187						
70%	88050	<u>198</u>	<u>329</u>	1520	<u>3530</u>	82473	169431						
60%	43730	<u>95</u>	<u>148</u>	<u>667</u>	<u>1844</u>	40976	80526						

Descriptor Clustering

	D	Mol Weight	FOR	LGP	HA1	HA2	HD1	HD2	ACG	AOH 1	BAG	FRB	ROT	AB	HCY	HPG	MOR
2	6000002	299.326	C19H13ON3	4.4841	4	4	0	0	0	0	0	0.115	3	26	2	0	89.285
1	6000047	297.435	C20H27ON		1	2	1	1	0	1	0		2	25	1	3	91.3358
v	6000086	290.362	C18H18N4		4	4	0	0	0	0	0	0.08	2	25	3	1	85.6332
V	6000087	267.329	C15H17N5		4	5	0	0	0	0	0	0.043	1	23	3	2	75.6992
V	6000107	265.353	C17H19N3		2	1	1	1	0	0	1	0.086	2	23	2	1	80.5079
V	6000133	292.335	C17H16ON4		5	5	0	0	0	0	0	0.08	2	25	3	0	82.6012
v	6000139	366.339	C20H13N4F3		4	3	1	1	0	0	0	0.133	4	30	2	0	97.4957
V	6000175	267.326	C ₁₆ H ₁₇ ON ₃	2.4862	3	2	1	1	0	0	1	0.086	2	23	2	0	77.4759
1	6000256	332.786	C19H13N4Cl	5.0888	4	3	1	1	0	0	0	0.111	3	27	2	0	97.5037
V	6000296	420.509	C26H24N6	4.192	4	5	1	1	0	0	1	0.108	4	37	3	0	122.344
V	6000298	342.348	$C_{21}H_{14}O_3N_2$	5.5734	2	2	0	0	0	0	0	0.137	4	29	2	0	101.469
V	6000309	334.322	C19H12N4F2	4.7136	4	3	1	1	0	0	0	0.107	3	28	2	0	92.4097
v	6000372	292.289	$C_{17}H_{12}O_{3}N_{2}$	4.4202	2	2	0	0	0	0	0	0.166	4	24	2	0	83.9634
•	6000433	342.348	$C_{21}H_{14}O_3N_2$	5.5734	2	2	0	0	0	0	0	0.137	4	29	2	0	101.469
N	6000440	338.362	$C_{21}H_{14}ON_4$	4.7368	4	5	0	0	0	0	0	0.1	3	30	2	0	100.24
V	6000441	316.332	C19H13N4F	4.5745	4	3	1	1	0	0	0	0.111	3	27	2	0	92.4517
V	6000452	255.275	C13H13ON5	1.1791	5	6	0	0	0	0	0	0.045	1	22	3	0	68.1202
	6000480	258.402	$C_{17}H_{26}N_2$	3.8445	0	0	2	1	0	0	2	0.047	1	21	2	0	78.2375
N	6000792	442.592	$\mathrm{C}_{15}\mathrm{H}_8\mathrm{O}_4\mathrm{N}_2\mathrm{CII}$	3.5978	5	6	1	1	0	0	0	0.08	2	25	2	0	86.1251
	6000815	455.462	C ₂₆ H ₂₁ O ₅ N ₃	5.9762	5	5	2	2	0	0	0	0.216	8	37	1	0	129.063
V	6000887	350.325	C19H14O5N2	4.3097	4	4	1	1	0	0	0	0.214	6	28	1	0	95.1981
	6000956	420.523	C21H28O5N2S	4.203	7	7	1	1	0	0	0	0.3	9	30	0	0	113.197

cluater all

Pages: 1

Future Updates

- Management of screening data
 - Upload of bioactivity information from external and internal screens
 - Diverse data types
 - Compound upload
 - Quantitative data forms
 - Image data
 - User-specific data?
 - Development of ontology for bioactives, screening data and phenotypes
 - Routines for publishing user data including mandatory curation system
 - Interoperability with other screeing projects: ChemBank, PubChem, etc.
- Chem/drug informatics utilities
 - QSAR analysis tools
 - Expansion of drug-likeness and descriptor predictions
 - Drug informatics R/BioConductor libraries
 - Size-insensitive similarity searching
 - Combinatorial searches, e.g. similarity plus descriptors
 - IUPAC/InChI names
 - 3D conformer generation

Library Comparisons

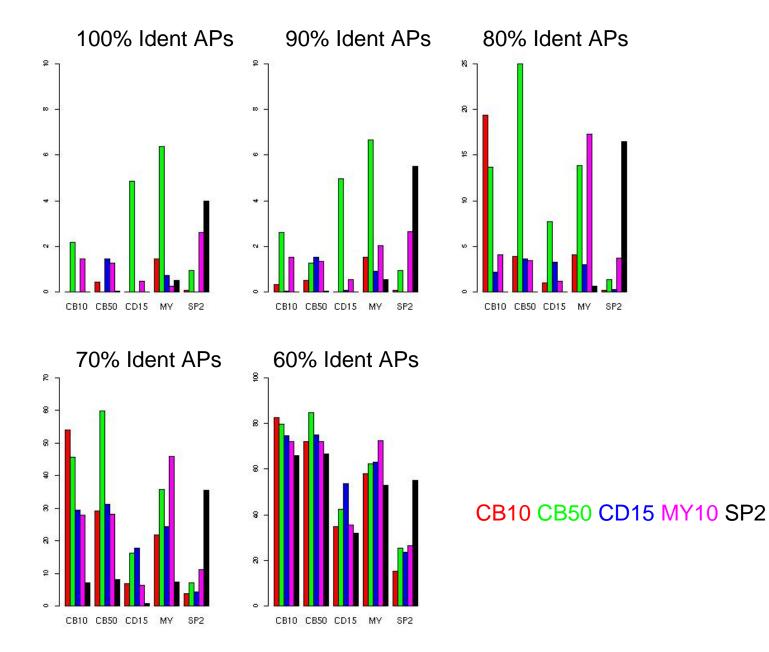
Assemble collection of 50-100K diverse drug-like compounds

Selection Criteria

- Screening compounds, bioactives and natural products
- Minimum overlap within and between libraries
- Vendor diversity (J Chem Inf Comput Sci 44: 643-651)
- Majority drug-like: 'plant Lipinski rules' (Pest Manag Sci 58: 219-233)
- Elimination of undesirable side groups (filters)
- Recommendations (ICCB, etc.)
- Literature (e.g. Tudor Oprea: Curr Drug Disc Technol 1: 211-220)
- Resupply situation
- Price

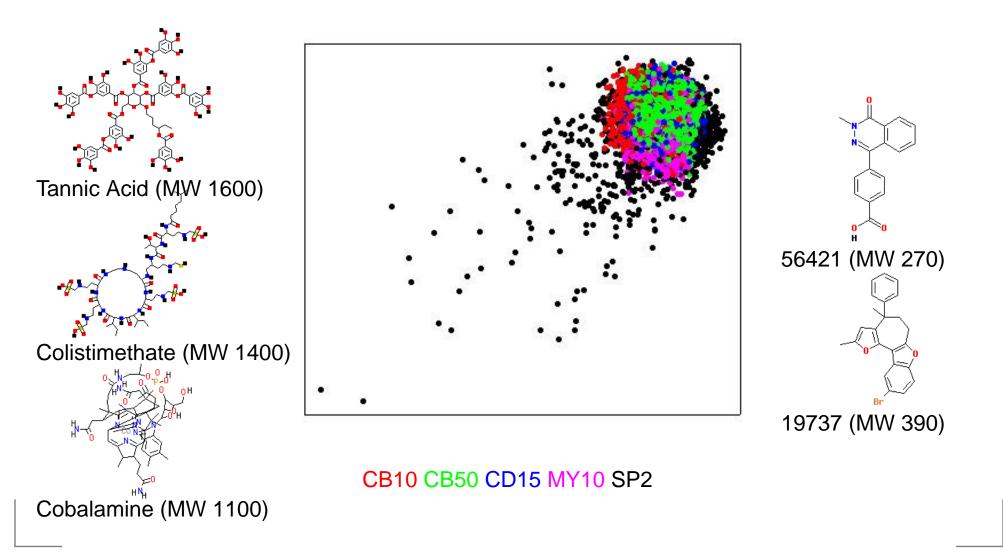
Analyzed Libraries

Quantity conversions

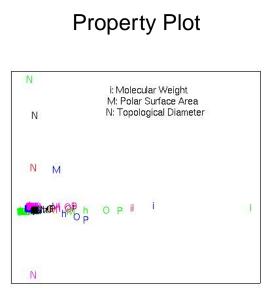

- First library: 0.1mg [20 μ l], 5 μ g/ μ l [10-20mM]
- Final assay conc: 5-10ng/ μ l [10-40 μ M]
- Solution Number of screens: 100 screens with 100μ l end volume
- Analyzed collections
 - ChemBridge: Microformat, 10,000 CMPs (0.1mg)
 - ChemBridge: DIVERSet, 50,000 CMPs (0.25mg)
 - Chemical Diversity: ICCB set, 15,000 CMPs (0.5mg)
 - Sigma/TimTec: MyriaScreen, 10,000 CMPs (0.25mg)
 - Microsource: Spectrum, 2,000 CMPs (0.25mg)
- On waiting list
 - ChemBridge: NOVACore (parallel DOS), 40,000 CMPs, 0.25mg
 - Biomol/TimTec: MaxiVerse, 9,600 CMPs, 0.25mg
 - World Molecules/MDD Inc: x CMPs
 - Enamine: 10,000-20,000 CMPs, 0.25mg
 - Analyticon Discovery: MEGAbolite & NatDiverse, 3000 CMPs, 0.25mg

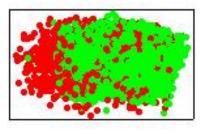
Clustering Methods

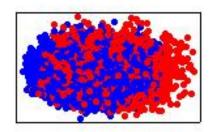
Principal component analysis


- Reduction technique of multivariate data to principal compoments to identify hidden variances
- Multidimensional scaling
 - Displays distance matrix of objects in spacial plot
 - Single linkage binning
 - Uses provided similarity cutoff for grouping of items

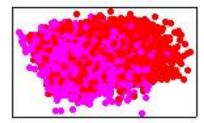
Similarity Clustering

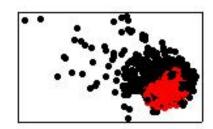

Property PCA

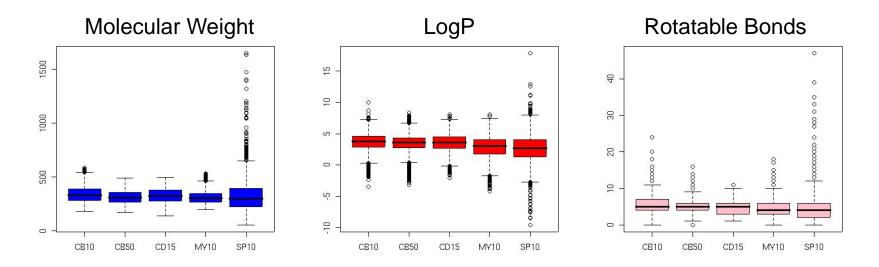

Diversity relative to 80 complex bioactives in MS Spec



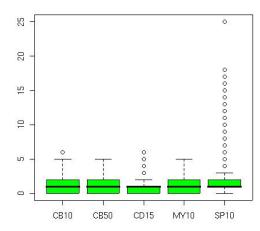
Property Differences

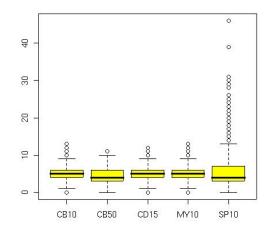

Compound Plots

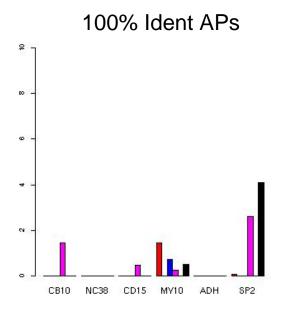


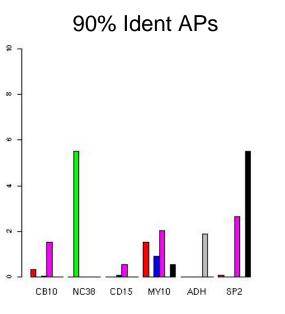


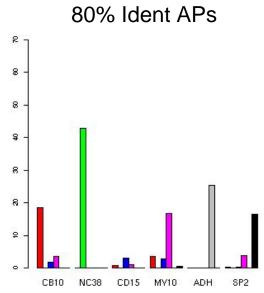
CB10 CB50 CD15 MY10 SP2

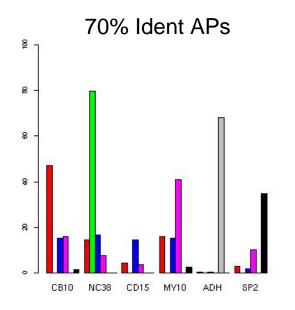


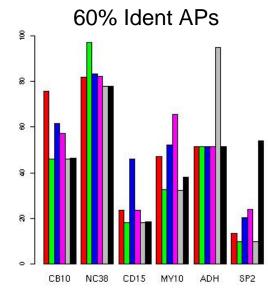

Lipinski Descriptors

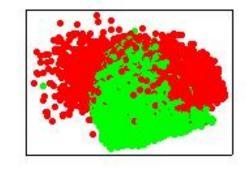

Hydrogen Bond Donors



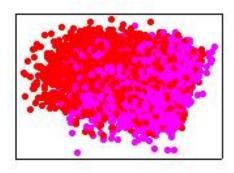

Hydrogen Bond Acceptors



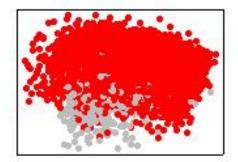

Similarity Clustering #2

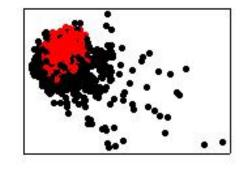





CB10 NC38 CD15

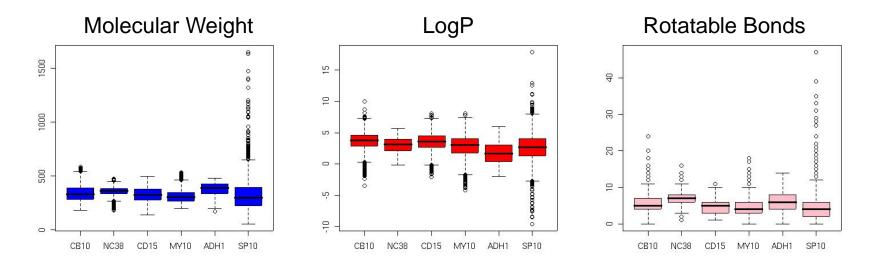
MY10 ADH1 SP2

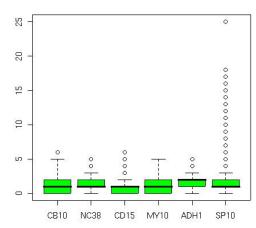

Property Differences #2

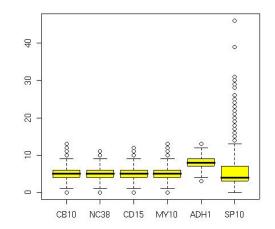




CB10 NC38 MY10 ADH1 SP2




Property Plot


Lipinski Descriptors #2

Hydrogen Bond Donors

Hydrogen Bond Acceptors

Conclusions

- Low overlap in high similarity ranges (>80%)
- Strong overlap in low similarity ranges (<70%)</p>
- Small differences in property spectrum
- Property spectrum clusters around known drugs
- Base decision on:
 - Price
 - Resupply
 - Sendor diversity

Lab Members

Center for Plant Cell Biology, UCR

- Julian Krause, Undergraduate S. (CS)
- Josh Lauricha, Systems Admin (CS)
- Kevin Horan, Programmer (Math/CS)
- Li-Chang Cheng, Undergraduate (CS)
- Charles Jang, Graduate S. (CG)
- Colleen Knoth, Graduate S. (CG)
- Jack Cui, Temp (BCH/CS)
- Thomas Girke, AC & PR (BCH/MolB/BI)

?